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Abstract

While technology studies and integrated assessment models incor-
porating endogenous technological change have demonstrated that ad-
vancing technology is a crucial component of an optimal greenhouse
gas abatement strategy, the R&D process itself has received little an-
alytical attention. This paper presents a conceptual framework for
considering and exploring the optimal allocation of R&D resources for
climate change technology development. The framework is then ap-
plied to a stylized application that considers the allocation between
R&D focused on resolving uncertainties about the retention of seques-
tration and R&D focused on improving the performance of renewable
energy technologies.
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1 Introduction

Technological change is a cornerstone of virtually every interpretation of an
appropriate response to the challenge of global climate change. Even with le-
nient stabilization targets and curbed growth scenarios, massive deployment
of energy sources with no greenhouse gas (GHG) emissions will be required
over the coming century, on the order of today’s entire energy system (Hoffert
et al. 1998, Caldeira et al. 2003). Many believe that the current resource base
and state of technical knowledge are unable to support deployment of this
magnitude at a reasonable cost (Hoffert et al. 2002). While socioeconomic
measures may be able to effect demand reductions and altered consumption
patterns, and while significant emissions abatement can be cost-effectively
achieved with known technological options (IPCC 2001), the development
and introduction of new technology is distinct from these methods in its
far-reaching ability to facilitate an affordable long-term transition.1

Given technology’s crucial role in achieving stated climate policy goals
in the U.S. and internationally,2 it is natural to examine carefully the impli-
cations of a strategy for its development. In particular, although privately
funded research and its interactions with public policy are fundamental to
technology development, it is useful to approach the problem from the “social
perspective”. This is usually interpreted as that of the government, but may
also be viewed as the examination of global resource allocation regardless of
funding source and incentives. A public research and development (R&D)
strategy can be roughly divided into two concerns: (1) the range and extent
of research to be undertaken, and (2) the public agency role in facilitating
this R&D. The second concern involves not only interactions between public
and private R&D, but also interactions between public agencies (e.g., Cali-
fornia and the Department of Energy), and interactions between countries.
The focus of this paper is on the first concern: in the broad social sense

1Technological advance is essential even from the skeptic’s perspective—arguments for
maintaining the current suite of energy technologies often depend heavily on the belief
that human ingenuity will succeed in producing adequate adaptive measures in the future
should any damages be realized.

2The United Nations Framework Convention on Climate Change (UNFCCC) has
resolved to stabilize greenhouse gas concentrations “at a level that would pre-
vent dangerous anthropogenic interference with the climate system” (1992; see
http://unfccc.int/resource/docs/convkp/conveng.pdf). President Bush affirmed the
United States’ commitment to this goal in speeches on June 11, 2001 and February 14,
2002.
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described above, determining the optimal allocation of R&D resources.
Within this context, there are many important avenues of inquiry. For

example, two technology areas expected to figure prominently in coming
decades are renewable energy (primarily wind and photovoltaics) and car-
bon capture and sequestration. This paper seeks to address strategic R&D
questions such as: Should development of renewable energy technologies be
postponed until the retention rates of geologically sequestered carbon are
better understood? Should near-term investment in resolving this uncer-
tainty increase in the belief that sequestration will have high retention rates
or the effectiveness with which R&D can discover this? Should the portfolio
be adjusted more toward renewable energy or more toward sequestration in
response to increasing uncertainty about the appropriate stabilization tar-
get?3

We recognize that explicit answers to this type of inquiry not only require
representation of highly complex systems, but also are inherently based on
subjective judgements of uncertainty and in some cases value. However, even
with a simplified representation and some subjectivity, we propose in this pa-
per that it is possible to better understand the forces that drive the answers.
Previous work applying integrated assessment models (IAMs) to the climate
problem has provided critical insight into the value of technological advance,
but these models do not capture the R&D process itself—e.g., the productiv-
ity of R&D investment, the allocation of resources under uncertainty about
research success, or the decision between different types of research. We be-
lieve that the climate change R&D planning problem now warrants the same
level of rigorous treatment that has been applied to other aspects of climate
policy, such as optimal emissions trajectories and optimal carbon taxes.

This paper has three primary objectives. The first is demonstrate the need
for formal research on R&D planning in the climate context that supplements,
complements, and interacts with the extensive work in integrated assessment
modeling. The second objective is to present a relatively simple conceptual
framework to meet this need. The framework we present puts heavy emphasis
on R&D decisions, while treating crudely the economic interactions between
technologies, typically the focus of IAMs. The third objective of the paper is
to show that interesting and important insights are available through more
explicit consideration of the R&D planning problem. To this end, we explore

3Uncertainty about the appropriate stabilization target is used here as a proxy for
uncertainty about the totality of impacts from continued GHG emissions.
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a stylized application that considers the allocation between R&D focused on
resolving uncertainties about the retention of sequestration and R&D focused
on improving the performance of renewable energy technologies.

The conceptual framework we employ is designed to inform and even-
tually incorporate the results of IAMs. However, the R&D process model
component is not explicitly linked to an IAM—integration is not necessary
in our framework. The goal of this study is not to solve the R&D planning
problem, but rather to bring to it greater rigor, so that the strengths of IAMs
and other studies of the climate problem may be brought to bear more di-
rectly on the R&D policy process. The structure we propose is general, but
will at a minimum enable (1) an understanding of the connection between
R&D investment decisions and technological advance; (2) collection and uti-
lization of information on technological potentials, barriers, and limits along
with empirical observations of the productivity of R&D itself; and (3) iden-
tification of key future scenarios and uncertainties to be explored through
IAMs or other approaches.

The paper proceeds as follows. In Section 2, we discuss previous research
relevant to R&D portfolio planning for climate change technologies. In Sec-
tion 3 and Section 4, we discuss two background issues that play into the
R&D portfolio planning process, namely the various roles of R&D and the
reasons for pursuing a diversified portfolio. Section 5 introduces the our con-
ceptual model. Section 6 introduces a stylistic application of the conceptual
model that focuses on an allocation between renewables, and sequestration.
Section 7 presents the results of the stylistic application; Section 8 concludes.

2 Previous Research

To date, although there is a great deal of research relevant to both the R&D
portfolio problem and the climate change context, there has been little re-
search directly on the problem in this particular context with formal or stylis-
tic models. Here we discuss several areas of research that can support the
climate change technology R&D planning problem.

An important backdrop to any problem in the climate context is the
extensive analysis conducted with IAMs.4 These models explore the long-
term implications of trajectories of technological advance and the interac-

4For example, see Manne et al. (1993), Nordhaus (1994), Edmonds et al. (1994), and
Prinn et al. (1999).
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tions between technological advance and optimal climate policy or emissions
trajectories. IAMs are ideally suited to understanding the value, both in
terms of costs and avoided emissions, of particular technological scenarios
because of their comprehensive representation of the physical and economic
systems in which technologies operate and compete. However, until recently
technological advance has entered exogenously into most IAMs, so that they
are unable to consider the underlying R&D process. From an ex poste per-
spective, integrated assessment analysis frequently does indicate that a large
variety of GHG-free technologies might contribute to stabilization. However,
it is misleading to make inferences from these predictions about the optimal
diversification of the current research portfolio. This issue is discussed in
Section 4.

In recent years, with the realization of the importance of technological
advance for climate stabilization, there have been increasing efforts to in-
corporate endogenous technical change (ETC) into IAMs.5 In these models,
the aggregate investment in innovation is a decision variable, capturing the
response of private actors to policy incentives, price signals, and learning
benefits from deployment. These contributions imply that substantial inno-
vation investment can lower the total cost of stabilization, and that optimal
near-term emissions policy may be less stringent when accounting for in-
creased innovation.6 However, in their current formulation, ETC models do
not consider allocation of innovation resources across technologies, and rep-
resent returns to investment as deterministic, whereas our interest here is in
characterizing the optimal R&D portfolio when returns are uncertain. Still,
our study relies on the ETC literature for the result that some R&D in-

5Efforts to endogenize technological change generally use one of two approaches—R&D
based advance and learning-by-doing. Important examples of the former include Goulder
and Mathai (2000), Schneider and Goulder (1997), Goulder and Schneider (1999), Nord-
haus (2002), and Popp (2002). Important examples of the latter include Seebregts et al.
(1999), Gritsevskii and Nakicenovic (2000), Grubler and Gritsevskii (2001), Goulder and
Mathai (2000), and van der Zwaan et al. (2002). Also, see Romer (1990) for a theoretical
framing of ETC.

6There is significant debate over the impact of ETC on the near-term stringency of
climate constraints. Models that include R&D as a decision variable along with emis-
sions levels indicate that the more innovation that is feasible, the less stringent should
be near-term actions, so as to take advantage of later technological advances. However,
models based on learning-by-doing indicate no clear direction (see Goulder and Mathai
2000). There has been no rigorous consideration of this question when R&D is imperfectly
stimulated by emissions policy.
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vestment is optimal, since we focus on relative rather than absolute resource
allocation.

The economics literature provides another angle of support with its ex-
tensive coverage of portfolio theory and its theoretical research on private-
sector innovation, in both environmental and non-environmental technolo-
gies. While most of this literature again focuses on the R&D behavior of
private actors,7 there have been several efforts explicitly considering portfo-
lio concerns in this context. For example, Dasgupta and Maskin (1987), in
exploring optimal diversification of R&D portfolios, implicitly demonstrate
that an assumption, widely made in this literature, of decreasing near-term
returns to innovation investment results in a more diversified optimal port-
folio. Loch and Kavadias (2003) illustrate similar effects of this assumption,
although they argue that it is most applicable to private firms operating in
mature markets. Section 4 further explores this topic.

One piece of research that explicitly considers R&D portfolio issues in
the climate context is Baker et al. (2003). The authors incorporate a sim-
ple, one-period model of R&D into a stochastic version of the DICE model
(Nordhaus 1994) to ascertain the impact of increasing damage uncertainty
on optimal near-term R&D. The results indicate that R&D into high-cost,
very-low emissions technologies such as photovoltaic (PV) cells can serve as
a hedge against bad climate outcomes, so that optimal investment in such
technologies will likely increase in uncertainty about damages.

3 The Objectives of R&D

R&D serves several objectives, some of which may not be explicitly intended
to advance technology. Here we discuss three of these objectives. We believe
that analysis of an R&D portfolio for climate change should consider variation
in R&D purposes in addition to variation across technology area. Moreover,
it is important to the design of a planning model to understand the different
ways in which R&D can provide benefits.

The most obvious role for R&D is to advance technology. For example,
research on PV cells is focused on reducing their costs or increasing their
efficiency at converting sunlight to electricity. Within this broad objective

7As mentioned above, while private sector behavior is important to R&D planning,
this paper considers the full level of R&D, including both public and private. It does not
consider the allocation between these sources.
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exists a well-known spectrum. At one end is relatively deterministic applied
research, or development, to bring concepts from the bench to application.
At the other end of the spectrum is basic research that has highly uncertain
long-term impacts on technology. Despite the uncertainty, basic research has
been consistently proven to carry large long-term benefits. The prototypical
research program in renewable energy technologies examined here is cast in
this mold.

A second motivation for R&D, or a second category of benefit, is to re-
solve uncertainty. Such a resolution may be the primary goal of the research
program, or it may be a secondary benefit from a more conventional program.
In particular, we identify three types of uncertainties R&D may address, di-
rectly or indirectly: (1) uncertainty about the potential for technological
advance; (2) uncertainty about exogenous factors affecting the value of tech-
nological advance; and (3) uncertainty about some aspect of the technology
itself.

The first type of uncertainty relates to how far a technology might ulti-
mately advance, how much it might cost to achieve this advance, and how
long it might take. When R&D intended to advance a technology is con-
ducted and the results observed, information is obtained about the potential
for advance with continued investment. For example, heavy expenditure
without results over several years might suggest that the chances of future
improvements would be smaller, or at least that expectations for progress
by a certain deadline should be more modest. As discussed below, these
ancillary incentives are partially represented in our framework. The second
type, exogenous uncertainty, is abundant in the climate context. For exam-
ple, there is a set of uncertainties regarding the link between emissions and
human welfare, including uncertainty about climate sensitivity, the impacts
of sea-level rise on human welfare, the effects on the spread of disease, and
so forth. While R&D specifically directed toward understanding these phe-
nomena is not considered in our model, the uncertainties themselves have
important implications for the allocation of innovation resources to other
programs.

The third type of uncertainty is concerned with aspects of current tech-
nology performance that R&D might resolve. The most significant exam-
ple in the climate change context is the permanency of sequestered carbon.
Planning for climate change might depend critically on the resolution of this
uncertainty. In our model, a research program designed exclusively for this
purpose is compared to the more traditional renewable research program.
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Also important may be uncertainties about resource bases, such as such as
the supply curve for uranium or the availability of geological reservoirs for
carbon sequestration.

A final reason to conduct R&D is to maintain capabilities. It is crucial
for firms and other R&D actors to be able to respond to new information
or ideas that might emerge from other firms, other parts of a firm, other
industries, or other countries. Research indicates that many firms maintain
R&D investment largely to take advantage of opportunities that arise else-
where or to be aware of these opportunities. There is empirical evidence that
firms may be willing to spend more to develop a new product than to buy
the same technology from a competitor, presumably because the perceived
value of knowledge more than offsets the premium.8 This purpose is not
explicitly modeled here; however, it may be straightforward to capture this
type of behavior by enforcing a minimum investment in each program under
consideration.

4 The Basis for a Diversified Portfolio

It is frequently stated as a matter of course that diversification is a criti-
cal characteristic of an optimal climate change technology R&D portfolio.
While diversification is generally a beneficial characteristic for investment
portfolios, including R&D portfolios, the evidence in support of a diversified
R&D portfolio specific to the climate change technology context has not, to
date, been well articulated. Moreover, diversification is an inexact charac-
teristic, defined loosely as exhibiting some measure of breadth (i.e., a wide
range of projects) and balance (i.e. equalization of effort across projects),
so that many possible portfolios could be classified as diversified. Hence,
it is perhaps more productive to cast the problem not in terms of diver-
sification, but in terms of the optimal allocation of R&D resources among
possible research projects or technologies. The stylized application in Section
6, through extrapolation from a pairwise comparison, seeks to quantitatively
investigate and begin to characterize this optimality. As background, this
section presents and discusses several systematic arguments that have been,

8See Rosenberg (1990). In the context of a carbon policy, this phenomenon can apply
to the trade-off between performing emissions reductions and purchasing permits—firms
may be willing to finance reductions more costly than the equivalent permit price so as to
gain the benefit of experience.
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or potentially could be, raised in support of a diversified climate change
technology R&D portfolio, the caveats above notwithstanding. These justifi-
cations fall into three classes: decreasing returns to scale, risk management,
and heterogenous applications.

In the case of decreasing returns to scale in R&D, the marginal productiv-
ity of innovation investment is decreasing the more that is invested. Applying
the standard optimality criterion of equal marginal returns across investment
options, a single research program will not dominate, since, as its marginal re-
turns fall with increased funding, it will be optimal to move funds to programs
with higher marginal returns to the first dollars spent. Thus investment is
spread across several programs to exploit the most productive range in each.9

In contrast, with increasing returns and no uncertainty, marginal productiv-
ity is increasing, so that one program will eventually dominate all others and
command the entire optimal allocation. These results are demonstrated in
both Dasgupta and Maskin (1987) and Loch and Kavadias (2003). Especially
in the near-term, the assumption of decreasing returns to scale is common
throughout the economics literature on innovation, and is incorporated into
the applied model presented in Section 6.

Risk management refers to the desire to decrease “risk”, broadly defined,
imposed by the wide variety of uncertainties associated with the climate
change onto the R&D planning problem. Concepts such as “insurance” and
“option value” fit into this category. The classic analog from the finance liter-
ature is the minimum variance associated with a particular expected portfolio
return.10 A large contributing factor to the risk inherent in the climate con-
text is the uncertainty about the ultimate welfare consequences of continued
GHG emissions. Optimal response to this type of risk might include diversifi-
cation to the extent that different technology mixes will be most useful under
different resolutions of the uncertainty.11 Uncertain technological returns to
R&D investment also expose the portfolio to risk. Diversification provides

9This argument does not hold in all cases. For example, technologies may receive zero
funding if they have lower marginal returns at zero investment than the marginal returns
from funded technologies at optimality.

10Note that there are other measures of risk beyond variance. See, for example, the
large literature on stochastic dominance.

11For example, a quick transition to a renewable-heavy mix may be justified if the welfare
consequences are very large, whereas a slow transition from fossil fuels might be justified
if the consequences are mild. A diversified portfolio can minimize risk by attacking both
of these possibilities. This topic is addressed in Baker et al. (2003).
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insurance against any single technology not advancing as far as expected.
Finally, maintaining a diversified portfolio of capabilities, thereby providing
the ability to take advantage of opportunities in any particular technology
area, can also be justified by uncertainty about when and where unexpected,
exogenous technological breakthroughs might arise.

Heterogenous applications refers to the idea that, to the extent that a
heterogeneous mix of technologies will be deployed in the future, irrespective
of technological advance,12 R&D funds should be correspondingly distributed
across the candidate technologies. While the first two justifications for diver-
sification have a solid logical foundation, this argument can be misleading.
First, predictions of heterogeneous technology mix made by many IAMs arise
from built-in random choice assumptions meant to model observed diversity,
and are therefore not based on the application-specific constraints that are
likely to actually produce heterogeneity. More to the point, belief that a
particular technology will have significant future deployment does not neces-
sarily mean it should receive significant current R&D funding. The optimal
allocation of R&D resources depends more directly on the potential for tech-
nologies to improve, and on the effectiveness of R&D funds at achieving this
improvement. Certainly it would be unwise to invest in a program that may
develop quickly, but has little potential for deployment; we argue here that
the reverse is also true.

Thus arguments about when diversification of innovation investment is
appropriate depend fundamentally on a detailed characterization of the tech-
nologies involved. Without careful consideration of issues such as decreas-
ing returns, productivity of innovation investment, and long-term potential
for advance and deployment, even the case for a diversified portfolio lacks
support, underscoring the need for more rigorous approaches to the R&D
planning problem.

5 The Conceptual Framework

Figure 1 illustrates schematically the conceptual framework for the R&D
planning model proposed in this paper. The framework models the invest-

12Heterogeneity arises because of variations in technology applications. For example, PV
cells are advantageous in locations isolated from the electricity grid, whereas hydroelectric
power is valuable in areas with significant rainfall and appropriate terrain. In general, it is
possible that no one carbon-free energy technology can supply demand in every context.
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ment allocation decision between different research programs over a finite
time horizon, and has two components: (1) a sequential and uncertain R&D
process model extending over a moderate time horizon (20 years in the styl-
ized example), in which the decision variables are the levels of funding re-
ceived by individual research programs in each time period; and (2) a discrete
set of possible R&D outcomes that are valued externally by the expectation
of a utility-weighted objective.13 While the framework could be used to as-
certain an “optimal” portfolio, the real value of exercising such a framework
is to gain insights into the dynamics of investment decisions and to identify
the key factors to which they are sensitive.
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Figure 1: A Conceptual Overview of the Modeling Structure

The R&D process model links R&D investment to the resolution of tech-
nological uncertainties and to technological advance. The model assumes
uncertain returns to investment, so more than one outcome is possible from

13Another approach would be to incorporate the R&D process model directly into an
IAM. R&D decisions would be made every period along with emissions and capital invest-
ment decisions in the IAM. This explicit linkage has been used already in deterministic
models such as those in Nordhaus (2002), Popp (2002), and Goulder and Schneider (1999),
but without considering individual research programs. While an explicit linkage has ad-
vantages, it also has several disadvantages. For one, the explicit linkage reduces flexibility
to consider a wide variety of R&D factors. For example, the detail of the R&D modeling
must be consistent with the detail of the IAM in consideration, whereas our goal is to de-
velop a framework that might be linked, at least implicitly, to a variety of IAMs. A second
weakness is the difficulty detailed IAMs have had considering sequential decision-making
under uncertainty, critical to the R&D planning process.
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a particular path of R&D spending. By including multiple periods, the R&D
process model can capture the dynamic resolution of uncertainty and the
response to this resolution through changed research allocations. A wide
variety of models would fit within this framework, from highly mathemat-
ical stochastic control models to classic decision analysis models. From a
practical standpoint, the R&D process model should be designed so as to
facilitate collecting and working with real technological data or subjective
data solicited from experts.

An important characteristic of the framework is that the possible research
outcomes are given a discrete rather than a continuous distribution—it is
fundamentally easier to characterize, understand, and value specific, discrete
outcomes than continuous distributions. The full range of possible research
outcomes may be aggregated into a small number of technological scenarios,
as in the application in Section 6, to simplify intuition. Each outcome is
characterized by a state of technology and a state of knowledge about future
potential; thus the outcomes represent intermediate scenarios in the course
of a century-long stabilization effort.

The utility weighting is applied to these aggregated scenarios in order to
capture a set of relative preferences among the different states of technology
and knowledge. The scenarios can be valued both informally through ex-
pert solicitation and review of existing IAM scenarios, and formally through
explicit linkage with one or more IAMs. The values of the scenarios may
vary based on uncertain, exogenous factors, such as climate sensitivity or
economic growth. We consider the creation, valuation, and ranking of these
possible scenarios to be one of the more important contributions of this re-
search approach.

Two additional consequences of the framework’s design deserve note.
First, while the approach allows for explicit modeling of the R&D process,
its timescale is far shorter than the timescale of the climate problem, usu-
ally assumed to be at least a century. This means that further technological
progress is an uncertainty, along with all the other uncertainties involved in
the climate context, and can only be represented as a contributing factor the
utility valuation.14 Second, because the modeling approach separates R&D
from the systems modeled by IAMs, it is not possible to capture the interac-
tions between R&D and policy during the time that R&D is ongoing. If, for

14This method of incorporating uncertainty into utility valuations has been used before
in practical decision analysis applications (for a discussion, see Keeney and Raiffa 1976).
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example, R&D resolves in 2015 that sequestration will have very high leak-
age rates making it untenable as a long-term technology solution, emissions
policy could not react until 2025. In the other direction, if climate science
were to indicate in 2015 that there is a much higher than expected chance
of extreme events or that population and emissions will naturally grow more
slowly than we originally thought, the R&D portfolio cannot be adjusted in
response.

6 A Stylistic Application

This section presents a stylized example of the conceptual framework. It
models the allocation decision between research to resolve uncertainties about
the permanency of geological sequestration and research to improve the cost
and performance of renewable technologies such as wind and solar power.15

Section 6.1 presents the R&D process model. Section 6.2 discusses the valu-
ation of the outcomes of the process model.

6.1 The R&D Process Model

The R&D process model covers twenty years in two ten year periods. A fixed
research budget each period is to be allocated between two research programs,
which are different in structure and theme. Figure 2 depicts single-period
trees for the two research programs. The first program aims to resolve tech-
nological uncertainty regarding the permanency of geologic carbon seques-
tration. The program may succeed or fail in either period, where success
corresponds to an uncertainty resolution, either positive (the technology is
proven viable) or negative (a fundamental flaw is demonstrated). Failure
in the sequestration program therefore corresponds to a lack of resolution,
rather than technological failure. We assume that if sequestration proves
viable, it will be economically attractive and would therefore constitute a
first-best outcome. Hence, the major concern with sequestration is perma-
nency and not cost. For the remainder of this paper, we assume an a priori

15Obviously this omits many important climate change technologies. There are two
interpretations of this abstraction. One is to view the model as a pairwise comparison
of the allocation decision, only part of the larger allocation process. A second is to view
the “renewables” program as the entire suite of non-fossil energy technologies, so that the
model captures the full allocation decision.
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subjective assessment, denoted by q in Figure 2, of 50 percent for the condi-
tional probability that given a resolution, the sequestration uncertainty will
resolve positively.16

P(� )

1-P(� )

Success

Failure

Single-Period Renewables
Model (Direct Technology 

Development)

P(� )

1-P(� )

No Resolution

Positive 
Resolution

Negative 
Resolution

q

1-q

Single-Period 
Sequestration Model 

(Uncertainty Resolution)

Fig_DecisionTrees

Figure 2: Sequential Decision Tree Framework

The second program aims to achieve substantial technological improve-
ments in renewable energy technologies such as solar power. Success each
period is binary, and therefore corresponds to the more traditional notion
of the realization of a technological breakthrough. Failure in the renewable
program corresponds to technology remaining in its current state. At this
point in the model development, it is unnecessary to define the actual cost
or efficiency numbers that would result from advance in renewables. We
need only define the utility of the outcomes of advance. We assume that
two successes in renewables will lead to a first-best situation analogous to a
positive resolution of sequestration. That is, renewables will be an econom-
ically attractive approach to climate change. A single success in renewables
will be less valuable, but would noticeably reduce the costs of quick climate
reductions in comparison to today’s technological options.

Investment affects the probability, rather than the extent, of success for
each research program. The probabilities of moving down branches in the

16This conditional probability is the same in both periods, implying that failure to re-
solve the uncertainty does not influence beliefs about which direction an eventual resolution
might point.
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respective trees are based on the portion of the research budget allocated to
each program, αi, where i represents the research program, and αseq +αrnw =
1. Specifically, the probability of success in research program, Pi, is defined
by the following innovation production function:

Pi = ρi

√
αi (1)

where the parameter ρi represents a limiting success probability for research
program i—the maximum probability of success for the program if all funds
were allocated to it. The limiting parameter is an intrinsic characteristic of
the research program or technology it represents. This particular functional
form is entirely arbitrary, but is attractive for this prototype application
because of its analytic simplicity. In this paper, we do not attempt to make
a single estimate of the ρ parameters, but instead assess the sensitivity of
the results to a wide range of values.

A fundamental assumption of the model is that the relationship between
investment and probability of success is concave. In other words, innovation
effort exhibits decreasing returns to scale, or ∂2P

∂α2 < 0. As discussed in Section
4, this property is a primary motivation for diversification, since an optimal
allocation will equalize marginal productivity across research programs.

By employing multiple periods, the model captures the trade-offs between
the two research programs. For example, the benefit of a resolved uncertainty
in the first period lies in the ability to make better subsequent decisions. In
this model, a negative resolution in the first period for the sequestration
program leads to a second period investment entirely in the renewable pro-
gram, whereas with first period failure to resolve sequestration uncertainty,
the second period decision may continue to consider both programs. When
only one period is considered, there is no distinction between a negative res-
olution and a failure, since both result in the same technological outcome.
Another important implication of the sequential decision framework over a
finite time period is that past successes and failures determine at any in-
termediate decision point the remaining potential in a particular research
program; thus updated expectations inform the dynamic investment alloca-
tion decision. For example, failure in the first period in renewables implies
that only one success is possible before the end of the 20-year time horizon.
As mentioned in Section 3, the model captures benefits from R&D in terms
of both technological advance and information about future potential.

For an intuitive interpretation of the parametrization of the model, con-
sider the following illustrative numerical example. Assume that the budget
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to be allocated consists of total worldwide investment in climate change tech-
nology R&D, including both private and public funding, and that this budget
amounts to $4 billion annually.17 The R&D decision is how to allocate these
funds between advancing renewables and resolving the uncertainty about
the permanency of sequestration. We illustrate three simple instances of an
investment strategy which may or may not be optimal: invest entirely in
sequestration, entirely in renewables, or an even balances of the two.

Suppose ρseq = ρrnw = 0.5. With these parameters, if all $4 billion were
spent on sequestration every year for the next twenty years, that is, if 100
percent of the allocation in both periods were committed to this program,
there would be a 75 percent chance that the uncertainty would be resolved
before the end of the time horizon, with a 50 percent chance that this would
lead to a positive outcome and a 50 percent chance that it would lead to a
negative outcome. If only $2 billion were spent each year on sequestration,
the chance of resolution by 2025 would be 58 percent. On the other hand,
spending the full $4 billion on renewables through both periods would lead to
a 25 percent chance of no advance, a 50 percent chance of moderate advance,
and a 25 percent chance of significant advance. If only $2 billion were spent
each year, there would be a 42 percent chance of no advance, a 45 percent
chance of moderate advance, and 13 percent chance of significant advance.

In this example, the decision model would consider whether the combina-
tion of the two halfway scenarios outperforms either unilateral strategy. In
general, adjusting the allocation across both programs and periods, the model
selects the investment strategy that maximizes expected utility, a function
of the distribution over the range of possible technological outcomes. The
basis of this valuation is discussed next.

6.2 The Outcome Scenarios

Three technological scenarios are possible after the twenty years of R&D,
and each scenario aggregates multiple research outcomes, that is, patterns of
success and failure between the two research programs. The contraction of
the possible outcome space into a discrete set is attractive because it sim-
plifies analysis without necessarily over-simplifying the assumptions about
the economic and technological impacts of innovation. The converse of this
benefit is that finer distinctions are lost by the aggregation. In particular,

17$4 billion is entirely arbitrary and was chosen for illustrative purposes only.
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while themselves intermediate and part of a long term path, the scenarios
are in the short term path independent; that is, the particular pattern of
success and failure that produced the outcome does not influence its utility
valuation. This is a natural area of extension to the model, since it is likely
that some patterns are preferable to others.18 Table 1 illustrates the aggre-
gation, and the following paragraphs describe the scenarios, highlighting as
well some of their limitations.

ModerateSuccessNeg/FailFailureFailure

Worst CaseFailureNeg/FailFailureFailure

RenewablesSequestrationRenewablesSequestration

First BestN/AN/AN/APositive

First BestSuccessN/ASuccessNegative

ModerateFailureN/ASuccessNegative

ModerateSuccessN/AFailureNegative

Worst CaseFailureN/AFailureNegative

First BestN/APositiveSuccessFailure

First BestSuccessNeg/FailSuccessFailure

ModerateFailureNeg/FailSuccessFailure

N/AFailure First BestPositiveFailure

Outcome

Second Period 
Research Outcome

First Period 
Research Outcome

Fig_Outcomes

Table 1: The Aggregation of Outcomes

First Best: In the first-best scenario, there exists a proven, economically
attractive option for reducing GHG emissions. The first-best outcome might
arise either by proof of the permanency of carbon sequestration, allowing the
current fossil fuel infrastructure to remain largely intact, or by significant
advances in renewables, allowing either a slow or, if necessary, a quick tran-
sition to these zero-GHG technologies. There is no accounting of transition
time, nor of the development of supplementary technologies associated with
the transition.19 Also, this scenario assumes no additional benefit to having

18For example, earlier successes, apart from their ability to inform future decisions via
updated expectations (which is captured by the model), may be more beneficial because
they facilitate earlier deployment and learning.

19For example, storage or demand-response technologies may be required to reduce the
impacts of renewable intermittency.
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both a positive sequestration resolution and significant renewable advance.

Moderate: This scenario is characterized by moderate advances in renew-
ables accompanied by either a failure to resolve the uncertainty regarding
the permanency of sequestration or a negative resolution. Renewables can
be an important contributor to GHG mitigation, but the costs will not be
trivial, and sequestration is not a clear-cut option either because it is highly
uncertain or is known to have limited permanency. These are not distin-
guished by the moderate scenario, but it is likely that the latter case is
preferable since it enhances the state of knowledge. Also, the timing issue
is not addressed—renewable success in the first period followed by failure is
effectively equivalent to failure followed by success.

Worst Case: This scenario is characterized by the lack of an attractive mit-
igation option. There has been only limited advances in renewables, leading
not only to marginal deployment, but also to a sense that additional advances
may not be forthcoming. Further, either there remains large uncertainty re-
garding the permanency of sequestration, making it a risky option, or it has
proven to be technically infeasible. In other words, the current state of tech-
nology remains largely unchanged by the end of the second period, although
our beliefs about the potential for advance in renewables may be different.
The same caveat may be made about differentiating between a failure to re-
solve the sequestration uncertainty and a negative resolution; the timing of
such a resolution may also affect the scenario’s valuation.

The valuation of each scenario depends on more than its technological
characterization. Also affecting society’s relative preferences is the extent to
which damages from climate change are realized, or are believed to be real-
ized. At present, there is great uncertainty about the impacts of continued
GHG emissions on human welfare. These impacts are therefore included as
an exogenous uncertainty that affects the valuation of the outcomes. Climate
damages, or more precisely, our beliefs about climate damages by the end of
the time horizon, may resolve to one of three states, each of which implies
a different utility weighting for the three outcomes. First, damages may re-
main in the predicted range, characterized by a relatively tight clustering of
utility values. Second, damages may appear to be severe, which primarily
affects the worst-case technological scenario, because severe damages, or the
stabilization effort required to avoid them, will be extremely costly if little
advance has been made in renewables and sequestration has proven techni-
cally infeasible. Third, there may be no climate damages, so that their effect
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Technological Climate Damages
Scenarios Predicted Severe Neutral

Probability 0.6 0.3 0.1
First Best 1 1 1
Moderate 0.5 -1 1
Worst Case 0 -10 1

Table 2: Relative Utility Valuation of Technological Outcomes with Climate
Uncertainty

on the technological outcomes is neutralized, implying an equal weighting of
all three. Climate risk is introduced by applying a probability distribution to
these three resolutions. In contrast, a control case is considered where only
the predicted damages are possible.

Table 2 shows the utility values used in the analysis. These values are
meant merely as placeholders to allow a demonstration the model. As dis-
cussed above, IAMs and other modes of evaluations could be applied in future
revision and expansion of the model to establish a more robust quantification
of the utility matrix. For this framework to be ultimately viable, it is critical
that the utility valuation employed reflect a relative preference set that is
not only defensible, but also transparent.20 A perhaps more tractable repre-
sentation of utility values can be made by considering hypothetical lotteries.
For example, the numerical values in Table 2 imply that under severe cli-
mate damages, society would be indifferent between obtaining the moderate
outcome and an uncertain lottery with an 82 percent chance of obtaining
the first-best outcome and an 18 percent chance of obtaining the worst-case
outcome. Depending on the definition of “severe climate damages”, this per-
spective may be a reasonable starting point from which to consider the values
of the different technological outcomes.

The values used in the analysis here also imply that in the first-best tech-
nological scenario, the extent of climate damages is economically irrelevant.
That is, increased climate sensitivity, with correspondingly lower concentra-
tion targets, does not increase the cost of emissions reductions, because either

20Note that the absolute values of the utility weighting are not the appropriate index for
interpretation. Since the weighting schemes represent a utility function, they need only be
consistent among themselves. Any linear transformation of the weights will provide the
same result.
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sequestration or renewables acts as a backstop technology providing essen-
tially limitless supply at constant marginal cost. In the case of no significant
climate damages, the utility values imply that all technological scenarios are
equivalent, because there will be no need to take any action. However, it
is possible that society should value this set of outcomes strictly less than
the set defined by the first-best technology scenario, since the investment in
R&D has proved futile. Such opportunity costs are not considered elsewhere
in the model because of the assumption that the budget to be allocated is
fixed.

7 Results

This section discusses the results of analysis conducted using the stylized
application. We begin by exploring, in broad terms, the circumstances that
would lead to a specialized optimal portfolio—one weighted heavily toward
one of the two research programs. Comparative statics are explored next, in
particular for the parameters ρ (referred to as productivity, since it scales the
success probability) and q (conditional probability of a positive sequestration
uncertainty resolution).21 Following the questions posed in the Introduction,
we first discuss the forces that drive the relative allocation between the two
programs, and second address the impacts of uncertainty. A discussion of
the dynamic response of optimal R&D to research success or failure follows,
and we end with a brief discussion of results from the numerical example.

As pointed out earlier, no strong conclusions can be drawn about the
precise characteristics of an optimal allocation. Rather the results suggest
some possible dynamics between the two research programs under consid-
eration, along with more general results about diversification that can be
inferred from the pairwise comparison. Overall, the main value of the results
presented here is to demonstrate the types of insights available from this
conceptual approach, and to show what steps may be taken to produce a
more rigorous set of findings.

21Further work should examine the effects of varying other parts of the model, such as
the functional form used in the R&D process model and elements of the utility valuation
matrix.
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7.1 Specialization vs. Diversification

Within the structure of the model, specialization occurs when one or more of
the underlying parameters are equal to zero or one; that is, either when one of
the research programs is wholly ineffective at achieving its objective, or when
the a priori belief is that sequestration has no chance for significant perma-
nency. The case of zero productivity or zero chance of a positive resolution
is trivial—naturally all investment will go to the other program. Similarly,
when ρrnw = 1, the first-best outcome can be reached with probability one
by investing completely in renewables in both periods, so that sequestration
is not necessary. However, even when ρseq = 1, as long as q < 1, there
remains uncertainty about a positive resolution, so that some investment in
renewables is always optimal (provided ρrnw > 0). This is an important point
that is driven expressly by the success structure of the sequestration research
program, and is therefore robust to most other model assumptions.22

For all non-boundary values of the parameters, some diversification is
optimal, that is, both programs receive positive investment. This result is
driven by the decreasing returns to scale assumption, as discussed above,
and is also consistent with the motivation to maintain capabilities in both
areas. The variation of the optimal strategy in response to changes in the
productivity parameters in several settings are pictured in a series of figures.

7.2 Near-term Renewables vs. Sequestration

A first question concerning the pairwise comparison is that of the postpone-
ment of renewable energy technology development until the retention rates of
geologically sequestered carbon are better understood. As discussed above,
the model’s results suggest in the realistic case that neither program is guar-
anteed to succeed, some investment in renewables is always optimal to bal-
ance the portfolio and provide insurance against the failure of sequestration.
Thus the model does not support the case for postponement, at least not in
the strict sense of complete cessation of renewables R&D. This effect is even
more pronounced when uncertainty about climate damages is introduced, as
discussed below.

22Specialization could also arise if R&D success had negligible value—for example, if
even two successes in renewables led only to the worst-case outcome. The stylized model
discussed here is structured so that this basis for specialization cannot occur, although the
case where q = 0 can be seen in this light.
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Figure 3: First Period Investment With No Climate Uncertainty

A second question is related and asks specifically whether optimal near-
term investment in resolving the sequestration uncertainty should increase
in beliefs about its productivity or chance of a positive resolution. Unsur-
prisingly, sequestration investment is always increasing in the latter belief,
that is, in the parameter q. In most cases, the same is true for the produc-
tivity parameter ρseq. Given that an optimal strategy is being pursued, if
new information suggests that either of these parameters is greater than pre-
viously thought, the new optimum will include a greater investment in the
sequestration program. This relationship is reflected by the positive slope of
the curves in Figure 3. However, when sequestration productivity is believed
to be very high, with productivity in renewables considerably less so, the
optimal allocation to sequestration actually declines in the productivity of
sequestration research. In other words, the optimal response to the same new
information as above would in this case be to invest less in the sequestration
program. The result may be seen graphically in the downturn of the upper
two curves in Figure 3.

This is perhaps the most striking result encountered by the analysis. One
intuitive explanation is that when confidence in the success of a sequestration
program is high, the insurance provided by the renewable program more
than offsets the opportunity cost of waiting until the second period. In
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most instances of this phenomenon, optimal second period investment in
sequestration is close to 100 percent, suggesting that the deferral option
drives the result. However, at this point, we do not consider the dynamic
well understood, and recommend it as a topic for continued research.

7.3 Uncertainty about Climate Damages
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Figure 4: First Period Investment With Climate Uncertainty

Another important question is the response of the optimal investment
mix to increasing uncertainty about the appropriate stabilization target, or
climate damages in general. To examine this question, the probability dis-
tribution shown in Table 2 was applied to the climate damage outcones and
compared to a control case were only predicted damages were possible. With
the introduction of uncertainty about climate damages, investment in seques-
tration is depressed in both periods. Figure 4 demonstrates this effect for
first period decision, with the control case represented by a dotted line and
the uncertain case represented by the solid line.

This result is driven primarily by the dramatic decrease in utility in the
worst-case scenarios under severe climate damages (recall the hypothetical
lottery illustration), and by the fact that investment in the renewable pro-
gram, as opposed to the sequestration program, allows for attainment of the
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moderate scenario. To the extent that these two structural attributes are
realistic, the model provides a powerful insight into the relationship between
R&D planning and climate uncertainty. Moreover, these results have impli-
cations on the response of the optimal investment strategy to other kinds
of exogenous uncertainty, highlighting the role of risk management in moti-
vating diversification. In this case, increased risk aversion (or equivalently,
increased risk with constant risk aversion) suggests an optimal diversification
strategy of more heavily favoring research programs with the possibility of
moderate outcomes.

7.4 Dynamic Response

A question not inherently related to these two specific research programs, but
interesting nonetheless for R&D planning in general concerns the implications
of first period performance for the second period investment decision. Some
intertemporal dynamics have been suggested in this section, but we have
not directly evaluated the claims made in Section 3 about the benefits of
information about technological potential for future decisions. In fact these
benefits are clearly demonstrated by the results for the entire range of the
model’s parameters—the optimal investment strategy in the second period is
significantly altered by whether research programs succeed or fail in the first
period, implying that such information is useful in optimizing the dynamic
response.

Figures 5 and 6 show the optimal allocation decision in the second period
when the the renewables program has succeeded and failed in the first period,
respectively. In the case of first period success in renewables, optimal invest-
ment shifts dramatically toward that program in the second period. Note
that when the carbon sequestration program succeeds, the second period in-
vestment decision, as it is stated in this model, disappears, because there
is no longer a need for uncertainty resolution. Thus these intuitive results
suggest that early successes in research programs, without actually changing
beliefs about the future productivity (the ρ parameters remain constant from
period to period regardless of research outcomes), can justify increased in-
vestment through the information they provide about what can be achieved
by the end of the time horizon.
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Figure 5: Second Period Investment after First Period Success in Renewables
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Figure 6: Second Period Investment after First Period Failure in Renewables
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7.5 Numerical Example

To conclude this discussion, the model was applied to the numerical exam-
ple in Section 6.1 with all three parameters equal to 0.5 (and no climate
uncertainty). Under these circumstances, the optimal near-term decision is
to weight the portfolio most heavily towards renewables, with less than $1
billion invested annually to resolve the permanency of sequestration. In the
second period, if the renewable program has failed, the optimal strategy is
perfect balance, while after a success, the renewable program receives more
than 90% of optimal investment. Fundamentally, however, the optimal allo-
cation of investment is too dependent on the an accurate characterization of
the productivity of R&D and the weighting of the outcomes to be satisfacto-
rily calculated here. The goal of this paper has been to present a framework
in which these fundamental factors can be better understood.

8 Conclusion

There are several significant conclusions that can be drawn from the work
described here. First and foremost, there is a research need for a better un-
derstanding of the R&D process as it relates to the climate change context.
The existing literature has not yet broached the subject, and large invest-
ments are currently being made, with even larger expenditure required in the
future, in the development of new energy technologies. Despite the complex-
ity and subjectivity inherent in the problem, these investment decisions can
be informed by R&D planning models.

The approach here is an important first step in demonstrating an analyt-
ical framing of the problem. To a certain extent it is a canonical problem,
with a structure independent of the climate context, although few other in-
stances of similar magnitude and breadth exist today. The key aspects of the
problem have been identified: describing research programs in terms of the
purpose of the research, the process by which investment produces results,
and the valuation of those results. Stylized analytical mechanisms have been
developed for each model component that capture the main drivers while
remaining tractable. In particular, the scenario mechanism provides an at-
tractive connection to other analysis in the field, such as that conducted with
large-scale IAMs. Finally, sketching only the details of these mechanisms al-
lowed the extraction of several interesting insights about the nature of the
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optimal allocation decision across time.
An important theme that emerges strongly from this exercise is the need

for more specific information on the potential for technological advance, and
on its relationship to R&D effort. Ironically, the most compelling conclusion
of this study may be the inability to make any robust conclusions about an
optimal R&D strategy with the current state of knowledge about the R&D
process. Parallel to the development of a deeper understanding of technolo-
gies themselves, continued refinement of the analytic framework presented
here should focus on effective incorporation of this technological informa-
tion.

The application in this paper is a prototype. Both the R&D process
model and the outcome scenarios require revision and expansion. To this end,
the key next steps include: (1) more rigorous, defensible, and transparent
valuation of outcomes based on, for example, linkage to IAMs or expert
solicitation; (2) the development of a more accurate innovation production
function, perhaps with an empirical basis; (3) improving the resolution of
the outcome scenarios to include timing and path dependence issues; (4)
exploring R&D programs with variable time horizons; (5) accounting for
technological outcomes exogenous to the R&D process, such as enhanced
public acceptance of nuclear energy; and (6) considering the optimal size of
the R&D budget as well as the relative allocation. It is our hope that, apart
from these developments, the work presented here may serve as departure
point for a wider analytic consideration of the R&D planning problem, an
instrumental part of the climate challenge.
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